
AI-Driven Sonification of Automatically Designed Games
Sara Cardinale, Michael Cook and Simon Colton

School of Electronic Engineering and Computer Science, Queen Mary University of London

Abstract
Music and other sound cues are used to support, enhance and change the experience of playing every type of digital game.
In this paper we explore the sonification of game states, the direct translation of game events or situations into music. We
present three strategies for allowing AI to convey information to the player using sonification, creating a pleasing soundtrack
while also affecting the play experience. We extend this to automated game design and suggest that sonification could be
embedded into automated game designers to directly influence the design process.

Keywords
Generative Music, Procedural Audio, Automatic Game Designers

1. Introduction
Sonification is the act of using sound or music to convey
non-aural information, either for functional or aesthetic
purposes. Early examples of sonification that are often
given are the Geiger counter, which translates radiation
levels into an auditory warning, making it easier to hear
both the presence of radiation, as well as the intensity.
Sonification is also used as a game mechanic or narrative
device in games such as Alien Isolation, In Other Waters,
or S.T.A.L.K.E.R.
Automated game design (AGD) is the science and en-

gineering of AI systems that model, participate in or
support the game design process. This can include tools
which help users explore design work; models of game
design theories or frameworks; and systems which de-
sign games autonomously. A common goal for AGD
research is expanding our idea of how AI can influence
game design, and finding ways for AGD systems to create
new kinds of experience [1], or solve new kinds of design
problem, using novel approaches [2].

Composingmusic for videogames is a complex creative
task, and has been approached in a variety of ways, from
linear soundtracks [3] through to complex adapative or
generative works that dynamically compose accompani-
ment to player actions [4]. The composition of music is
thus as much part of the game design process as artis-
tic direction or narrative design, and therefore a valid
topic for automated game design research to consider. In
fact, music offers a unique opportunity for an automated
game designer to communicate emotions, knowledge and
atmosphere to the player, through a careful combination
of musical knowledge, sonification strategies, and game

The Experimental AI and Games Workshop at AIIDE
Envelope-Open s.cardinale@qmul.ac.uk (S. Cardinale);
mike@possibilityspace.org (M. Cook); s.colton@qmul.ac.uk
(S. Colton)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

AI analytics.
In this paper we present the results of our sonification

experiments working with Puck, an automated game
designer. We report on preliminary experimentation
sonifying Puck’s games, and considering different ways
in which information about a game can be sonified, for
both emotive and communicative purposes. We also
comment on how difficult implementing each of these
strategies is: how much it is affected by a specific game
design; how much musical knowledge is required; and
how expressive the resulting music is. We show that
sonifying game states can yield a range of exciting new
musical approaches for games and propose that, in the
future, automated game designers such as Puck could be
adapted to design their own bespoke music composition
systems for each new game they design.

2. Background

2.1. Puck
Puck is an automated game designer, described in [5],
released as a downloadable app that can be run locally
on any computer. Each version of Puck keeps a record
of what it creates, allowing it to build an understanding
of its design space over time, and maintain a creative
history of how its work has developed. Puck also works
on long timescales, taking days or weeks to finish a game
design, and switching between different projects. These
features aim to improve the ‘presence’ of the system, in
the computationally creative sense, by allowing people
to develop an appreciation of the system and anticipate
its creative process. Puck’s creative process is constantly
visualised and can be watched.

Puck uses a combination of evolutionary search and
partially-exhaustive content generation to slowly explore
a design space, using past results to adjust its future
search decisions, but retaining all results whether good
or bad. Evaluation of games is achieved using AI agents

mailto:s.cardinale@qmul.ac.uk
mailto:mike@possibilityspace.org
mailto:s.colton@qmul.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


which play the game in different ways and at different
skill levels. The performance of these agents is then
analysed by Puck and combined with other analytical
tools to create a measure of how promising or interesting
Puck considers the game to be.
Puck is built in a modular fashion, allowing for new

capabilities to be added and removed dynamically. In
[6] the authors consider how the automation of game
feel design can be added to Puck’s workflow through
the use of a pre-existing tool for generating game feel
effects called Squeezer. In this paper, we explore new
areas for which no existing tool exists, namely the design
of dynamic and emotive soundtracks that are suited to
a previously unseen game’s design. Our focus for this
paper was to explore what possibilities exist for sonifying
game states based on the same kinds of analytical process
that Puck already uses to evaluate games for quality.
For our experiments in this paper, we looked at two

different games. As in Johansen’ study of game feel ef-
fects in Puck, we chose one automatically designed game
and one human-designed game, to provide a balance
of perspective between Puck’s games (which may not
be commercial-quality) and established games that have
been refined over decades of play. As one of our goals is
to enable Puck to design musical systems for any game,
studying human-designed games is important from a co-
creative perspective, as well as studying how Puck can
create musical systems for its own games.

2.1.1. Antitrust

Antitrust is a game designed by Puck in 2021 and de-
scribed in [5]. It is played on a 5x5 board by two players.
Players take it in turns placing pieces of their colour on
the board, meaning a board tile location can have three
states: empty, or with a piece of either player colour. At
the beginning of a player’s turn, if there are any rows of
four or more pieces of the same type (of either colour)
they are removed from the board. When a player plays a
piece, if the board is full the game ends, and the winner
is the player with the most pieces on the board. Figure 1
shows a screenshot from Antitrust.

2.1.2. SameGame

SameGame is a game designed by Kuniaki Moribe in 1985,
and a popular game for amateur developers to clone and
develop variants of. It is typically played on a 10x10
board for a single player, but many variations exist and
Puck’s version is played on an 8x8 board as this is the
maximum board size Puck can currently represent. The
board is initially filled with a random collection of pieces
of four different colours. When a player clicks on a tile,
all contiguously connected tiles of the same colour are
destroyed (assuming at least three tiles are connected).

Table 1
NRT Rewrite rules for major and minor chord starting points.
In each case, the starting chord is {𝑎, 𝑏, 𝑐}.

NRO Major Minor

𝑅 {𝑎, 𝑏, 𝑐 + 2} {𝑎 − 2, 𝑏, 𝑐}
𝑃 {𝑎, 𝑏 − 1, 𝑐} {𝑎, 𝑏 + 1, 𝑐}
𝐿 {𝑎 − 1, 𝑏, 𝑐} {𝑎, 𝑏, 𝑐 + 1}
𝑁 {𝑎, 𝑏 + 1, 𝑐 + 1} {𝑎 − 1, 𝑏 − 1, 𝑐}
𝑁 ′ {𝑎 − 2, 𝑏 − 2, 𝑐} {𝑎, 𝑏 + 2, 𝑐 + 2}
𝑆 {𝑎 + 1, 𝑏, 𝑐 + 1} {𝑎 − 1, 𝑏, 𝑐 − 1}

Pieces then fall down and gather together to fill in gaps,
and the player scores points proportional to the number
of tiles destroyed. The game ends when the player can
no longer destroy tiles, or the board is cleared.

2.2. Neo-Riemannian Theory
Neo-Riemannian Theory (NRT) comprises methods for
analysing chord progressions composed using triadic
chromaticism, in which the progressions are not restricted
by tonality. This means that the music can change in
ways that are unexpected to the listener, providing a wide
range of emotional effects. Such chord progressions can
be challenging to analyse with conventional music the-
ory, whichmostly relies on keys andmodes to understand
the musical context and the development of harmony and
melody. Analysing a piece of music through the lens of
NRT involves identifying which NRO (Neo-Riemannian
Operator) or sequence of NROs (a compound NRO) has
been applied to a triadic chord to produce the next in the
progression, if any. In order to facilitate the application
of NRT to generative music, Cardinale and Colton [7]
rationalised NRT in terms of rewrite rules based on the
original NROs, as per table 1.
NRT is well-suited for analysing film and videogame

soundtracks, as this musical genre often uses chromatic
chord progressions to quickly respond to on-screen or in-
game events [8]. For example, the sudden and dramatic
appearance of a character can be immediately matched
with a powerful change in chord progression. Further-
more, the relationship between chords described by NRT
is well-suited to be implemented in generative systems
to compose associative film and videogame music that
follows a visual media narrative. The formalisation of
NRT as an analysis technique was carried out by Cohn
[9] where a mathematical description of NRT was put
forward. Moreover, referring to film music, Lehman
[8] mapped compound NROs to emotional/situational
changes in film narratives, as per table 2, which we draw
upon later.



Table 2
Association of NRO sequences and emotional and/or situa-
tional scene elements [8].

Compound NRO Emotion/Situation

LP Antagonism
L Sorrow, loss
N Romantic encounters
PRPR Mortal threats, dangers
RL Wonderment, success
NRL Suspense and mystery
RLRL Heroism (Lydian)
NR Fantastical
S Life and death

2.3. Related Work
As discussed earlier, sonification has been used widely as
a tool for data comprehension, accesibility, and creativity.
Games research has also leveraged sonification to explore
new applications to the medium. For example, SoniFight
[10] creates additional aural cues for games to increase
accessibility for visually impaired players. This utility
software allows players to add aural cues for meaningful
gameplay information, such as how many seconds are
left in the round, player’s health, amount of ammunition,
and the player’s location in the playfield. SoniFight uses
watches, a pointer chain that finds the value of interest
(e.g. player’s health) and its data type, and triggers to
play the audio cue based on the watch value. Players can
share their SoniFight configurations for games, allowing
for collaboration between users. While our approach
here is not built with accessibility in mind, it could be an
interesting extension of this work to consider it in the
future.

Game AI research has also applied sonification to game
content generation. For example, Sonancia [11] blends
level architecture and audio, choosing and mixing sound
to create the soundscapes of a level and create an aural
experience that can be adapted to any level. Sonancia
focuses on creating frightening and tense soundscapes.
The sonification system builds the sense of tension as the
player progresses through the level, ensuring that player
engagement is maintained throughout the gameplay by
subtly choosing and changing instruments, so that the
music does not become distracting. Sonancia uses two
algorithms, one to choose instruments and one to arrange
the way that sounds are played based on the current
intensity. The results of this tool showed that it can
consistently create unique soundscapes and it can create
a sense of narrative progression within the level.

Our approach has similarities with Lopes et al.’s work,
in that one of our objectives is to provide an aural con-
text for the narrative arc of gameplay. However, we aim
to provide general sonification techniques that can be

adapted to a range of game designs, from single-player
arcade games to two-player strategy games. Additionally,
rather than aim for a designed tension arc, our sonifica-
tion strategies adapt to the current state of the game, led
by the player or players. Our work can therefore be seen
less as a tool for a designer creating a specific experience,
and more as an accompaniment or enhancement to the
game’s natural flow.

There is also a well-defined space of audio-only games,
or games with strong aural components that can be
played with little or no visual information. This includes
games designed to be played through movement or other
indirect sensors, such as Zombies, Run!, J. S. Joust or
Bounden. It also includes games designed with blind
or visually-impaired users in mind, such as The Vale
[12], which uses binaural sound and conveys all neces-
sary information to play the game purely through audio.
While this is not the same as sonifying game information
through music, it does show how games can fully rely
on aural information for their design. Our work focuses
on augmenting visual games for the time being, but the
possibility of applying this to fully audio-driven games
in the future holds a lot of promise.

3. Sequencer-Based Sonification
We initially experimented with sonification by building
a system that would continually produce music sonify-
ing the state of the game, rather than individual player
activity. Inspired by games such as Chime Sharp [13],
and by grid-based MIDI controllers such as the Novation
Launchpad, we treated Puck’s game board as a one-track
sequencer. The sequencer’s ‘track’ starts at the top-left
board position (as viewed by the player) and playing
left-to-right, top-to-bottom. When the sequencer head
reaches a new board position, if there is a game piece
on the board at that location it plays a note, sample or
other sound depending on the type of piece. When the se-
quencer head reaches the end of the board, in the bottom-
right, it resets back to the top-left.
Supporting the sequencer, we added a basic ambient

backing track, with the sequencer head progress matched
to the BPM of the backing track. Because player activity
does not directly affect the music at the moment of play,
the sequencer and the speed of play are unrelated to
one another, which we hypothesised would allow the
music to remain at a sufficient distance from the player
to avoid interfering with gameplay. We added a small
visual indicator to the board to show the location of the
sequencer head, so the player could more easily identify
the progress of the music. Figure 1 shows a screenshot
of Antitrust being played in Sequencer mode, with the
yellow tile on the second row showing the location of the
head, which gently fades in and out as it moves between



Figure 1: A screenshot of Antitrust with a sequencer. The
yellow tile indicates the sequencer’s current position.

grid locations.
Our initial testing with this prototype suggested two

effects to us: first, although we intended there to be
distance between the soundtrack and player actions, we
found the music nevertheless had a subtle impact on our
play choices, encouraging the player to avoid grouping
too many pieces in a small area, and filling in gaps where
no soundswere being produced to even out the disruption
of sounds in the full loop. Secondly, we observed that
in a game such as Antitrust, where the objective is area
control, the sequencer’s output gently indicates which
player is ‘winning’ in the sense of having overall board
control. The generatedmusic flows between emphasising
one player’s pieces or the other.

3.0.1. Implementation

Of the three strategies we present in this paper,
sequencer-driven sonification is the easiest to implement
within an automated game designer, as it requires no
contextual information about the game itself and can, in
theory, be implemented in any game. However, although
it can be implemented with no additional information,
some games suit it better than others. Antitrust, with
its relatively small board size and sparse piece coverage,
has a naturally slow buildup of pieces, and every piece is
precisely placed by a player, making its sequencer out-
put relatively atmospheric. SameGame by contrast starts
with a randomly filled board of the maximuim size allow-
able by Puck, which means the sequencer output has less
meaning and is more cacophonous. Thus although this
is a one-size-fits-all approach, it is not always the best
choice.

4. Heuristic-Driven Sonification
This approach uses heuristic functions that measure prop-
erties of the game’s flow and progress to modify an ambi-
ent soundtrack accordingly. This approach is customised
more precisely to a particular game design, but as a result
requires more preparation to use.

We define a progress heuristic as a simple measurement
of a game’s proximity to an end state. More formally, we
could define such a heuristic as a function which maps
a game state to a number in the range [0, 1], where 1
indicates a game state that has reached completion (a
win, loss or draw)1. Progress measured this way is not
monotonic increasing, in that progress can be undone
and games may move further away from completion.
Progress heuristics are also not an exact reflection of
how close a game is to completion. Instead, what we aim
to achieve with a progress heuristic is a measurement
that is close to the average player’s approximate sense of
how close a game is to completion.
As an example, consider Antitrust. Antitrust’s game

end state is the board being full of pieces, therefore a
useful progress heuristic would measure the number of
pieces on the board, and divide by the number of spaces
on the board. However, pieces can be removed from the
board if rows of 4 or more are made, and this happens
often during the game, therefore a game that is close to
completion can be reset to an earlier stage of progress.
Nevertheless, the ‘fullness’ of the board does correlate
with an observer’s sense of how close the game is to
completion.
We tie the progress heuristic for the current game

to the background sound in our sonifier. In our experi-
ments we use the progress heuristic to drive the BPM of
the background track, making it faster as the game nears
completion, updating it each time a player makes a move.
This could be tied to other aspects of the music, however,
including the overall volume, the mix of different tracks,
or the selection of instruments. Multiple heuristics could
be made, tracking different game features (such as the
progress of individual players to winning, with each con-
trolling the mix of competing instrumental tracks, for
example).

4.0.1. Implementation

Implementing this approach for an automatically de-
signed game is not entirely straightforward, as a progress
heuristic must be created that suits the game design. For
example, the progress heuristic mentioned above for An-
titrust, i.e., how close the board is to being full, is the
exact opposite of an appropriate progress heuristic for
SameGame, where the game board begins filled up. In the
case of Puck, we are able to automatically select progress
heuristics from a catalogue of pre-written functions based
on the end conditions for the game – for example, an end-
ing condition based on a player making three-in-a-row
would track the length of the longest row of pieces. How-
ever, automatically generating bespoke progress heuris-

1The definition of 0 would vary depending on the game in question,
as the opposite of a game’s end state is not necessarily a game’s
starting state.



tics, that take into account the complex dynamics of the
whole game design, is a more challenging task. We dis-
cuss this in Future Work.

5. NRT-Driven Emotional
Sonification

This approach uses game events as triggers for changes
within a generative musical composition. The sonifi-
cation system receives contextual information about
changes to the game state, and translates this into emo-
tional cues which are mapped to chord transitions via
Neo-Riemannian Theory rewrite rules, as described
above.

5.1. Evaluating Game Events
Unlike the previous two sections, which sonify the overall
flow of the game, this approach directly responds to in-
game events. For our purposes we restricted our system
to respond to player actions only, namely tapping the
board to place pieces in Antitrust, or to destroy pieces
in SameGame. However, this approach could be easily
generalised to respond to other in-game events.
When a player takes a game action, we need to be

able to provide some context to the sonification system
about how the soundtrack should respond. We focused
on evaluating the quality of the move made, so the player
(and any observers) can gain an awareness of how good or
bad each move is perceived to have been as the dramatic
arc of the game continues. To evaluate a particular move
as good or bad, we use Puck’s in-built MCTS agent to play
every potential move available to the current player and
rank them according to how good it expects the move to
be. When the player selects a move, the move’s overall
rank is then sent to the sonifier, so it can respond with
an appropriate shift in emotion in the soundtrack.

Although the same MCTS system is used to both com-
pute opponent moves and evaluate move quality, the AI
opponent does not always take the move considered ‘op-
timal’ because it is playing at a lower level of skill than
the AI agent used to evaluate move quality. As described
in [5], we vary the skill level of an AI MCTS agent by
changing the computational resources provided to it. In
our prototype sonification example we use a high-skill
MCTS agent to evaluate moves, and a medium-skill AI
to play the game.

5.2. NRT-Driven Synthesis
In this approach, we utilise NRT-driven sonification of
player moves: given the ranking of each player’s moves,
we sonify significant moves (either good or bad) played

across the course of a game. During our initial experi-
ments, we did this by recording a full gameplay session
with move analysis and composing the music post-hoc,
sonifying the first, best and worst move made across the
whole game.

In the previous examples, we made use of samples to
play sound. For this sonification approach, we created a
tool which implemented the generative rationalisation
of NRT as described in [7], to provide emotional adapta-
tion of the music based on the quality of the move made
by the player. Our tool, GENRT, allows both planned,
scripted and dynamic music generation using NRT trans-
forms. This can be used to generate background music
for videos, using a cue-sheet, or to respond with dynamic
music to accompany live gameplay. Additionally, GENRT
can produce various styles of music by allowing the user
to control instrumentation, tempo, elements of rhythm,
aspects of the chord changes allowed by generative NRT,
and how a voice-led melody is produced above (or be-
low) the chord sequence. In particular, GENRT allows
music to be generated in a series of episodes, each with
different specifications for the music production. The
specifications are blended over a series of bars, using slid-
ing probabilities, instruments overlapping with sliding
volumes and averaging of parameters. The blending of
generative specifications leads to a fairly smooth blend-
ing of the music produced. In particular, it is possible to
have episodes with increasing tempo, which can subtly
increase perceived tension.
In addition, we extended Cardinale and Colton’s ra-

tionalisation of NRT by implementing re-write rules for
suspended (Sus2 and Sus4) and augmented chord types
and adding them to our GENRT tool. This extension
improves the ability of the tool to convey emotion, pro-
viding different types of chords and therefore different
musical colours. For instance, Sus2 and Sus4 chords do
not contain the third scale degree to classify them as ma-
jor or minor, giving them a neutral sound. Furthermore,
the lack of the third degree and its replacement with the
second, in the case of Sus2, or the fourth degree, in the
case of Sus4, creates a small cluster of two intervals close
to each other (1𝑠𝑡-2𝑛𝑑 or 4𝑡ℎ-5𝑡ℎ). This cluster calls for an
aural resolution to the third scale degree to finally reveal
the chord’s key, thus creating tension when, or if, there
is no resolution. Expanding the palette of chords GENRT
composes with enables the generation of a broader and
richer collection of emotional music accompaniment.
GENRT produces background music for Puck game-

play videos as a chord progression, by starting with a
given chord, then repeatedly randomly choosing a com-
pound NRO with some user-imposed constraints, and ap-
plying this to produce new chords. Bass, melody and per-
cussion lines are added to correspond to the chords, with
fairly simplistic techniques. To make this background
music bespoke to a Puck game playthrough video, partic-



ular compound NROs are used to substitute the random
ones at key points in the video narrative. These substi-
tutions are chosen according to table 2 to appropriately
reflect the game change: the RL (wonderment) compound
NRO is used to choose the chord played when the first
move occurs; RLRL (heroism) chooses the chord for the
best move; and PRPR (danger) is used for the worst move.
For post-hoc accompaniment production, the user pro-
vides a text file of cues, specifying the timestamps and
nature of the most important moves in a game video. In
future, the evaluation Puck makes of a player’s move
will be used to drive the music generation during live
gameplay.

We originally found the background chord sequences
to be too dramatic for the emotional chord changes to be
audible. Hence we added a constraint that during back-
ground music generation, the random compound NROs
chosen must produce chords where the tonic, third and
fifth are all within a given, fixed key. In addition, the
application of an emotional compound NRO forces the
change of the fixed key to the one specified by the chord
produced. We found that this approach makes music
where the dramatic change was clear and sustained over
the duration of a few following chords. Additionally, us-
ing the episodic nature of GENRT music production, we
increased the tempo slowly over two episodes spanning
most of the video. We also used the episode specification
to slowly change the bass from a soft synth sound to a
louder, more piercing cello line, and added tick-tock style
percussion to further subtly increase tension in the music.
To synchronise the emotional chord changes with the
video, we implemented an exhaustive technique which
tries all possible chord durations and percentage decrease
in duration from the slow to the fast episode.

We have provided a recording of a game of SameGame
with an accompaniment produced by GENRT, which
demonstrates our NRT-driven approach.2 The emotional
chord changes are synced to the three important moves
(first, best, worst) to within an average of 0.3 seconds.

6. Future Work
In this paper we primarily focus on using AI techniques
such as game state evaluation as a driver for sonification
strategies designed by a human expert. We plan to de-
velop a system that is able to understand what would be
an appropriate sonification strategy for a given game. It
might take into consideration game design choices such
as the type of board, the game’s rules and what bad or
good turns consist of. This system could be implemented
as a module within Puck or another automated game de-
signer to create soundtracks for new AI generated games

2Available at tinyurl.com/genrtdemo. Playback is muted by default -
the unmute button is in the top-right of the video.

and compose music that is specific to the game’s design,
its gameplay and rules.

In future, we aim to empower automated game design-
ers to create games with a sonification-first approach,
rather than selecting sonification strategies after the fact.
For example, designing a game where playing well leads
to more harmonious, interesting or melodic output. This
could lead to the emergence of new types of game where
player behaviour is subconsciously led by the sonification
strategy, gently showing the player optimal strategies, or
even fully teaching the player the game simply through
sound cues.
We are interested in the sonification of automated

game design process, the process that an AI such as Puck
goes through when creating a game. This would allow
the sonification of the game designer’s ideas, and allow
the audience to hear the music develop and change as it
encounters good or bad ideas. For example, we would
like to create a soundtrack to Puck’s design process which
sonifies the steps that it goes through to develop a new
game, mapping or associating certain features and as-
pects of the design process to musical elements like BPM,
modality and instrumentation, moving from ambient to
more fast-paced styles. This is especially interesting as
Puck designs abstract puzzle and strategy games, and
sonifying the environments, game pieces, and rules it
chooses can lead to wide musical variety of styles, keys
and instruments within the soundtrack. It could also
provide a way to add what is known as framing informa-
tion to the creative process. Framing is a computational
creativity term for an AI’s ability to communicate its cre-
ative process to an audience [14]. This would allow for a
non-textual framing, with music that conveys the direc-
tion of the creative process, how well it is progressing,
and whether unexpected things are happening.

Puck’s games are similar to genres of game that are typ-
ically simple visually, including abstract strategy games
and casual puzzle games. These games are played on
a single screen, with basic but eyecatching visuals that
are easy to read at a glance. While these games can be
aesthetically pleasing and excellent examples of design,
they represent only one type of game experience.

In our approaches in this paper, we connect music cues
and outputs to discrete and easily-identified aspects of
gameplay. However, sonifying the player experience in
a more complex game such as a 3D open-world adven-
ture game would require a much deeper understanding
of the game’s design, context, and intended player ex-
perience. While there are many examples of specific in-
stances of dynamic, adaptive or context-sensitive music
for videogames, there are no examples of systems which
can design such generative music systems themselves
GENRT is in an early stage of its development, and

there is much work to be done to make the music it pro-
duces not just appropriate for a particular game, but also



to exhibit high levels of musicality and diversity over the
games it works for. We plan to eventually make it avail-
able as a plugin for a major game engine such as Unity or
Unreal, to make it easily available for people to make be-
spoke soundtracks for games and/or for automated game
designers to develop music-generation systems which
run as the game is played.

7. Conclusions
In this paper we have described three approaches to soni-
fying games in the design space of Puck, an automated
game designer. Each of the three approaches surfaces a
different kind of information to the player, at different
levels of prominence, and with differing levels of com-
plexity in their implementation. All three approaches
can be easily reapplied to other games in Puck’s design
space, meaning an automated game designer could be
extended to apply these techniques to games as they are
designed.

Music composition, sound design, and game data soni-
fication are currently unexplored aspects of automated
game design. We believe we have shown there is great
potential in this space not simply to make compelling
static soundtracks for games, but to use music and sound
as a new generative layer through which the AI can com-
municate and shape dynamic and complex experiences.
We are excited to expand this further, and apply our
work in Neo-Riemannian Theory to build more expres-
sive composition systems. Our next step is to study user
responses to these sonification strategies, and better un-
derstand not just the emotional and personal response to
the music itself, but to also study the measurable effect
the sonification may have – consciously or otherwise –
on the behaviour of the players experiencing it. We are
looking forward to exploring the expressive and creative
strengths of music composition in an automated game
design setting, and building tools that open up this power
to game designers of all kinds.

Acknowledgments
This work has been funded by UKRI and EPSRC as part
of the “UKRI Centre for Doctoral Training in Artificial
Intelligence andMusic”, under grant EP/S022694/1, and by
the Royal Academy of Engineering Research Fellowship
Scheme. We would like to thank the anonymous review-
ers for providing helpful feedback, which improved this
paper.

References
[1] G. Barros, M. Green, A. Liapis, J. Togelius, Data-

driven design: A case for maximalist game design
paper type: Position paper, Proceedings of the 9th
International Conference on Computational Cre-
ativity, 2018.

[2] N. R. Sturtevant, N. Decroocq, A. Tripodi, C. Yang,
M. Guzdial, A demonstration of anhinga: A mixed-
initiative EPCG tool for snakebird, in: Proceedings
of the Sixteenth AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment,
2020.

[3] C. Larkin, Hollow Knight Soundtrack, 2017.
[4] P. Weir, No Man’s Sky Soundtrack, 2016.
[5] M. Cook, Puck: A slow and personal automated

game designer, in: Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive
Digital Entertainment, 2022.

[6] M. Johansen, M. Cook, Challenges in generating
juice effects for automatically designed games, in:
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
2021.

[7] S. Cardinale, S. Colton, Neo-riemannian theory for
generative film and videogame music, in: Proceed-
ings of the International Conference on Computa-
tional Creativity, 2022.

[8] F. Lehman, Film music and neo-riemannian theory,
Oxford Handbook (2014). doi:10.1093/oxfordhb .

[9] R. Cohn, Introduction to neo-riemannian theory:
a survey and a historical perspective, J. of Music
Theory (1998) 167–180.

[10] A. Lansley, P. Vamplew, C. Foale, P. Smith, Sonifight:
Software to provide additional sonification cues to
video games for visually impaired players, The
Computer Games Journal 7 (2018) 115–130.

[11] P. Lopes, A. Liapis, G. N. Yannakakis, Sonancia:
Sonification of procedurally generated game levels,
in: Proceedings of the International Conference on
Computational Creativity, 2015.

[12] F. Squirrel, The vale: Shadow of the crown, 2021.
[13] S. Curran, Chime sharp, 2016.
[14] J. Charnley, A. Pease, S. Colton, On the notion

of framing in computational creativity, in: Pro-
ceedings of the Third International Conference on
Computational Creativity, 2012.

http://dx.doi.org/10.1093/oxfordhb

	1 Introduction
	2 Background
	2.1 Puck
	2.1.1 Antitrust
	2.1.2 SameGame

	2.2 Neo-Riemannian Theory
	2.3 Related Work

	3 Sequencer-Based Sonification
	3.0.1 Implementation

	4 Heuristic-Driven Sonification
	4.0.1 Implementation

	5 NRT-Driven Emotional Sonification
	5.1 Evaluating Game Events
	5.2 NRT-Driven Synthesis

	6 Future Work
	7 Conclusions

